国际医疗器械设计与制造技术展览会

Dedicated to design & manufacturing for medical device

September 24-26,2025 | SWEECC H1&H2

EN | 中文
   

‘Smart Skin’ Monitors Biological Signals on Demand

Penn State researchers recently developed an adhesive sensing device that seamlessly attaches to human skin to detect and monitor the wearer’s health. The writable sensors can be removed with tape, allowing new sensors to be patterned onto the device. (Credit: Jia Zhu/Penn State)

Skin can send certain health-related signals, such as dry skin feeling tighter to indicate the need for moisture. But what if skin could be smarter, capable of monitoring and sharing specific health information, such as the concentration of glucose in sweat or heart rate? That was the question driving a team that recently developed an adhesive sensing device that seamlessly attaches to human skin to detect and monitor the wearer’s health.

This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing. The researchers made an adhesive composite with molecules called polyimide powders that add strength and heat resistance and amine-based ethoxylated polyethylenimine — a type of polymer that can modify conductive materials — dispersed in a silicone elastomer, or rubber. The stretchable composite not only accommodates direct 3D LIG preparation, but also its adhesive nature means it can conform and stick to non-uniform, changeable shapes — like humans.

They experimentally confirmed that the device can monitor the pH value, glucose, and lactate concentrations in sweat as well as can be detected via finger prick blood draws. It can also be reprogrammed to monitor heart rate, nerve performance, and sweat glucose concentrations in real time. Reprogramming is as simple as applying clear tape over the LIG networks and peeling them off. The substrate can then be re-lasered to new specifications, up to four times before it becomes too thin. Once it becomes too thin, the entire device can be recycled.

The device remains adhesive and capable of monitoring even when the skin is made slick with sweat or water. Currently powered by batteries or near-field communication nodules, like a wireless charger, the device could potentially harvest energy and communicate over radio frequencies, which researchers said would result in a standalone, stretchable adhesive platform capable of sensing desired biomarkers and monitoring electrophysical signals.

Article Source: MB

X